Ultra-High Speed
Optical Networks

Optical Communications

Cloud computing, Artificial Intelligence, Social Applications, and on-line Video continue to fuel the insatiable need for always more bandwidth, driving further the specifications for higher-speed optical transceivers inside and between the datacenters with ever-challenging requirements for higher density, and lower power consumption. 


Mobile service providers moving to 5G, need to increase the speed of their access network, and reduce the latency of their front haul.   


Our fully integrated Photonic ICs address the requirements for high-volume , higher-capacity, and scalable Optical Engines for: 

  • Pluggable optical transceivers Co-Packaged Optics for Data Center interconnects 

  • High-Performance-Computing (HPC)  

  • 5G front-haul pluggable optical transceivers    

Optical Engines

Our Optical Engine includes our Photonic Integrated Circuit (PIC) with its integrated lasers, its control electronics, and the fibre array attachment. The PIC is designed to interface with off-the-shelves modulator drivers and TIA.(reference design implementations available) 

3D BOARD WEB 6 (1).png
Product Portfolio
  •  Optical Engines for Direct Detection (800G and beyond) and Coherent (400G) 

  •  Multi-Wavelenght Remote Laser Source,  C/D-WDM Laser Array

3D Sensing

3D or depth-sensing is instrumental for Artificial Intelligence-based applications to gain a better understanding of their surroundings, and deliver better experience and service to the users.

The most important component in this application is the LiDAR,  and there is a wide range of technologies to support the multiple use cases of the automotive ADAS, or autonomous vehicles for the logistics industry.


FMCW LiDAR allows for simultaneous ranging and speed detection, whereas the coherent ranging is insensitive to weather conditions or other LiDAR system interferences. A transition to 1550nm wavelength will also solve the eye safety regulatory concerns. 


Leveraging tunable laser integration and coherent receiver technology from optical communication development, we are working at offering a fully integrated FMCW LiDAR engine.


Quantum Photonics

Using our technology that combines Si and III-V/InP or GaAs materials, key components required for quantum key distribution and quantum random number generators could be monolithically integrated, reducing dramatically the cost, and removing barriers for wider adoption.


Our solution has the potential to deliver the performances needed for implementing all optical components such as a narrow linewidth laser source, a coherent receiver, and a photon detector on a Fully Integrated Photonic Circuit.


SCINTIL Photonics

BHT – Bât. 52  

7, parvis Louis Néel – CS 20050  

38040 Grenoble cedex 09



Thanks for submitting!